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Abstract
We consider how to determine all transition rates of an ionic channel when it
can be conformationally described by a star-graph branch Markov chain with
continuous time. It is found that all transition rates are uniquely determined by
the distributions of their lifetime and death-time at the end state of each branch.
An algorithm to exactly calculate all transition rates is developed. Numerical
examples are included to demonstrate the application of our approach to data.

PACS numbers: 02.50.−r, 02.50.Ga, 05.40.−a
Mathematics Subject Classification: 60J10, 60J27, 60K40

1. Introduction

The study of ionic channel activity plays an important role in biophysics and neuroscience
[1, 10, 12, 29]. It serves as a bridge to connect molecular biology with cellular physiology:
neuron spikes are generated due to the opening and closing of many ionic channels. Calcium
channel is vital to the survival of the cell, to the long-term potentiation and depression and
intra-cellular, extra-cellular signalling [6]. There are many different opening levels for an
ionic channel. In general, an ionic channel can be conformationally described by a Markov
chain with continuous time (there are different opinions, see for example [14, 15, 19, 21, 22,
24, 25, 27, 30, 31], whether it can be conformationally described by a Markov or non-Markov
chain). The behaviour of ionic channels has been analysed in detail in the literature [7, 8, 29]
in terms of a Markov chain with states at different opening levels. As an example let us
consider the following case.

The ionic channel of star-graph chain. A single ionic channel has only one observable
state, called open state (say state O), and N experimentally non-observable closed states (say
state C1, C2, . . . , CN ), which indicate different opening levels. For the channel, transition
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Figure 1. Left panel: schematic plot of a star-graph chain. Right panel: schematic plot of the
trajectory of the star-graph chain activity. σ1, σ2, . . . are the lifetime sequences, and τ1, τ2, . . . are
the death-time sequences.

cannot directly happen between the closed states; while each closed state can transit to the
open state. Therefore, the closed states cannot intercommunicate directly but can only by
going through the open state. The channel activity can be conformationally described by
a star-graph chain with continuous time (see figure 1, left panel). Let us denote αi and λi

(i = 1, . . . , N) as transition rates from one state to another, i.e., they measure the ‘speed’ to
jump from one to another. In the matrix term, we can define a matrix (transition rates matrix
or Q matrix)

Q =



−
N∑

i=1

λi λ1 λ2 · · · λN

α1 −α1 0 · · · 0
α2 0 −α2 · · · 0
...

...
...

. . .
...

αN 0 0 · · · −αN


,

which contains all information of the activity of the chain.
In a biological experiment, the ionic channel activity is usually only partly observable

[9, 10, 12, 29]. For example, only the open state is observable in the star-graph chain depicted
in figure 1. For the open state of the ionic channel, let σ be its open time (lifetime) and
τ its closed time (death-time). The observations of σ and τ are denoted by σ1, σ2, . . . and
τ1, τ2, . . . as in figure 1 (right panel). The histogram of σ is called the lifetime histogram
and the histogram of τ is the death-time histogram.

It is always relatively easy to determine the lifetime and death-time histograms of a single
state. Suppose we know exactly the lifetime histogram and death-time histogram of every
open state. Can we uniquely determine the full-channel activity in terms of the data from the
observation of these open states? By this, we mean to obtain the transition rates from one state
to another state. For example, in the star-graph chain as in figure 1, we have the distribution
density of τ and σ , we intend to find out constants αi and λi(i = 1, . . . , N).

The issue that how to determine all transition rates in terms of the partial observation of the
whole-channel activity, as one might expect, has been addressed early in the literature [16]. In
[16], they estimated the matrix Q, directly using the maximum likelihood estimate. However,
the estimation could be very rough since it involves the estimating of some latent variables. In
the current paper, we develop a totally different approach. Our algorithms employ the intrinsic
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Figure 2. Schematic plot of a star-graph branch Markov chain.

properties of the Markov process and all calculations are simply reduced to the estimation of
PDFs (probability density functions) of lifetime and death-time of observable states. Once we
have them, all subsequent calculations are then automatic and exact. Hence we expect that
our approach provides us with a more powerful and natural way to estimate transition rates.
The star-graph chain, birth–death chain, cyclic chain and hierarchical chain are reported in our
series of publications [11, 34, 35]. Here we take into account the star-graph branch Markov
chain ionic channel. It is found that all transition rates are uniquely determined by the PDFs
of the lifetime and death-time at the end state of each branch.

In section 2, we address the issues mentioned above, including all theoretical conclusions,
proofs and algorithms. In section 3, we present a numerical example to illustrate the
applications of our algorithm to data.

2. Statistics of star-graph branch Markov chain

For convenience, we always use 〈· · ·〉 denoting a column vector, (· · ·) a row vector, diag(· · ·)
a diagonal matrix, and AT the transpose of a matrix A. We adopt the standard convention that
the infimum of an empty set is infinity.

Consider an ionic channel which can be described by a star-graph branch Markov chain
{Xt ; t � 0} (see figure 2) with a state space

S = {
E

(1)
0 , E

(1)
1 , . . . , E

(1)
N1

, E
(2)
0 , E

(2)
1 , . . . , E

(2)
N2

, . . . . . . , E
(m)
0 , E

(m)
1 , . . . , E

(m)
Nm

,O
}
.

and the transition rate matrix Q = (qij ) satisfies

Q = (qij )S×S =



H1 O O · · · O A1

O H2 O · · · O A2

O O H3 · · · O A3

...
...

...
. . .

...
...

O O O · · · Hm Am

B1 B2 B3 · · · Bm −q


where

Sk = {
E

(k)
0 , E

(k)
1 , . . . , E

(k)
Nk

}
, 1 � k � m,
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and

Hk = (
q

(k)
ij

)
Sk×Sk

=



−λ
(k)
0 λ

(k)
0 0 · · · 0 0

µ
(k)
1 −(

λ
(k)
1 + µ

(k)
1

)
λ

(k)
1 · · · 0 0

0 µ
(k)
2 −(

λ
(k)
2 + µ

(k)
2

) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · µ
(k)
Nk

−(
µ

(k)
Nk

+ ak

)


,

with
Ak = (

q
(k)
ij

)
Sk×1 = 〈0, 0, . . . , ak〉, ak > 0, 1 � k � m,

Bk = (
q

(k)
ij

)
1×Sk

= (0, 0, . . . , bk), bk > 0, 1 � k � m,

λ
(k)
i > 0(0 � i � Nk − 1), 1 � k � m,

µ
(k)
i > 0(1 � i � Nk), 1 � k � m,

q =
m∑

k=1

bk.

It is easy to know that the chain {Xt : t � 0} is reversible. Thus there exists an invariant
probability measure

π̂ = {
π

(1)
0 , . . . , π

(1)
N1

, π
(2)
0 , . . . , π

(2)
N2

, . . . . . . , π
(m)
0 , . . . , π

(m)
Nm

, π
}

such that

diag(π̂) ∗ Q = (diag(π̂) ∗ Q)T = QT ∗ diag(π̂), (1)

and
m∑

k=1

Nk∑
i=0

π
(k)
i + π = 1. (2)

In the following sections, we first work out how to estimate all transition rates along the
branch of E

(1)
0 , and the conclusions are generalized to the general case.

2.1. Observation at the end state E
(1)
0

Define τ = inf
{
t > 0, Xt = E

(1)
0

}
and σ = inf

{
t > 0, Xt �= E

(1)
0

}
(the death-time and

lifetime at the end state E
(1)
0 , respectively). In the following, we will prove that every element

of H1 and A1 can be uniquely determined by the PDFs of the lifetime and death-time at the
end state E

(1)
0 .

For the concise of notation, we rewrite the state space S as

S = {0, 1, 2, . . . ,M,M + 1, . . . . . . , N}
with M = N1, N = ∑m

k=1(Nk + 1).
Simply to write Q = (qij )S×S and π̂ = {π0, π1, . . . , πM, πM+1, . . . , πN }. Then

H1 = (qij )S1×S1 =


−λ0 λ0 0 · · · 0 0
µ1 −(λ1 + µ1) λ1 · · · 0 0
0 µ2 −(λ2 + µ2) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · µM −(µM + a1)

 ,

where λi > 0(0 � i � M − 1), µi > 0(1 � i � M), S1 = {0, 1, 2, . . . ,M}.
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Let P be a probability measure such that {Xt ; t � 0} with the initial distribution
{π0, . . . , πN } and the transition rate matrix Q. PS0 denotes the probability measure such
that {Xt ; t � 0} starts in S0 (S0 = {1, 2, . . . , N}). Define

P̂ (t) = (p̂ij (t)) ≡ eQ̂t ≡
∞∑

n=0

tn

n!
Q̂n (t � 0).

Thus

P(τ > t) =
N∑

i=1

P(τ > t |X0 = i)PS0(X0 = i) =
N∑

i=1

πi
∗

N∑
j=1

p̂ij (t), (3)

where PS0(X0 = i) = πi
∗ = πi

1−π0
.

On the real vector space RN , we define an inner product

(X, Y )� =
N∑

i=1

πixiyi, for any X, Y ∈ RN,

where � = diag(π1, π2, . . . , πN).
It is easy to verify that P̂ and Q̂ are symmetric linear transition matrices with respect to

the inner product (·, ·)�. Thus Q̂ has N real eigenvalues −α1,−α2, . . . ,−αN such that αi > 0
(see [3, 36]) and N orthogonal unit eigenvectors ε1, ε2, . . . , εN with respect to (·, ·)�, where
εi = 〈ε1i , . . . , εNi〉 (i = 1, 2, . . . , N), that is to say, for any i, j ∈ S,

Q̂εi = −αiεi, (4)

(εi, εj )� =
N∑

k=1

εkiεkjπk = δij . (5)

Set E = (ε1, . . . , εN) = (εij ),W = (ωij ) = E−1. Write A = diag(α1, α2, . . . , αN). By (4)
and (5), we get

Q̂ = −W−1AW, WT W = �,

WQ̂ = −AW, �Q̂ = −WT AW.
(6)

Let β = 〈β1, β2, . . . , βN 〉 ≡ W I, where I = 〈1, 1, . . . , 1〉. Then, by (3) and (6), for t � 0

P(τ > t) = 1

1 − π0

N∑
i=1

πi

N∑
j=1

p̂ij (t)

= 1

1 − π0

N∑
i=1

πi(P̂ (t)I)i

= 1

1 − π0
IT �W−1 e−AtW I

= 1

1 − π0
βT e−Atβ

= 1

1 − π0

N∑
i=1

βi
2 e−αi t . (7)
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If we put

γi = β2
i αi

1 − π0
, 1 � i � N,

cn =
N∑

i=1

βi
2αi

n = βT Anβ, n � 0,

dn =
N∑

i=1

γiα
n−1
i , n � 0,

(8)

then we have

cn = (1 − π0)dn. (9)

Lemma 2.1.1.

(i) The PDF of the lifetime σ is

fσ (t) =
{
λ0 e−λ0t if t > 0,

0 if t � 0.
(10)

Thus λ0 = 1
Eσ

. Therefore, λ0 can be estimated by the PDF of σ .
(ii) The PDF of the death-time τ is

fτ (t) =
{∑N

i=1 γi e−αi t if t > 0,

0 if t � 0.
(11)

Lemma 2.1.2. The following conclusions hold.

(i)

π0 = d1

λ0 + d1
. (12)

(ii) For 1 � n � M − 1, a1 and λn can be expressed in terms of rational functions of
{λ0, d1, d2, . . . , d2n+1}.

(iii) For 1 � n � M,µn can be expressed in terms of rational functions of {λ0, d1, d2, . . . , d2n},
where dn = ∑N

i=1 γiα
n−1
i , n � 1.

Proof. Since Q̂I = 〈−q10, 0, . . . , 0〉, by (6), we have

π1q10 = −IT �Q̂I = IT WT AW I = βT Aβ = c1. (13)

By (1), π0λ0 = π1q10, then π0λ0 = c1 = (1 − π0)d1. Thus (i) holds true.
Now let us prove (ii) and (iii). Let qi = −qii,Wi = 〈ω1i , ω2i , . . . , ωNi〉 is the ith column

vector of W .
According to π0 = d1

λ0+d1
, cn = λ0dn

λ0+d1
and a1 = qM − qM,M−1, we only need to prove the

following facts: for 1 � n � M ,
(H1) µn = qn,n−1, λn + µn = −qnn = qn, λn = qn,n+1 and πn all are rational functions of

{c1, c2, . . . , c2n+1};
(H2) Wn = gn(A)Aβ, where gn(A) is a polynomial of A with deg(gn) = n − 1 (here

deg(g) denoting the degree of g) and its coefficients are rational functions of {c1, c2, . . . , c2n}.
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Now let us use mathematical induction to prove these facts as follows:
When n = 1, since

WQ̂I = W 〈−q10, 0, . . . , 0〉 = −q10W1,

then by (6), we get

q10W1 = Aβ. (14)

Thus

π1q
2
10 = WT

1 W1q
2
10 = (Aβ)T (Aβ) = βT A2β = c2. (15)

By (13)–(15), we obtain

µ1 = q10 = π1q
2
10

π1q10
= c2

c1
,

π1 = (π1q10)
2

π1q
2
10

= c2
1

c2
,

W1 = c1

c2
Aβ ≡ g1(A)Aβ,

(16)

where g1(A) = c1
c2

I .

Again by (6), �Q̂ = −WT AW , that is to say

πiqij = −WT
i AWj , i, j ∈ S0, (17)

and again by (14),

π1q1 = WT
1 AW1 = 1

q2
10

(q10W1)
T A(q10W1) = 1

q2
10

(Aβ)T A(Aβ) = c3

q2
10

.

Thus by (15)

λ1 + µ1 = −q11 = q1 = c3

π1q
2
10

= c3

c2
, q12 = λ1 = q1 − q10 = c3

c2
− c2

c1
. (18)

Therefore, according to (16) and (18), for n = 1 the inductive assumptions hold.
Now we suppose that for all 1 � n � k, these results hold. Then, when n = k + 1 (setting

W0 = 0), by (6), we have

qk+1,kWk+1 = (qkI − A)Wk − qk−1,kWk−1. (19)

By (17), we get

πk+1qk+1,k = πkqk,k+1 = −WT
k AWk+1. (20)

Hence

qk+1,k = qk+1,k

πkqk,k+1

(−WT
k AWk+1

)
(by (20))

= 1

πkqk,k+1

[
WT

k A(A − qkI )Wk + qk−1,kW
T
k AWk−1

]
(by (19))

≡ βT Ah(A)Aβ, (21)

where

h(A) = 1

πkqk,k+1

[
(A2 − qkA)g2

k (A) + qk−1,kgk−1(A)Agk(A)
]
.

By the inductive assumptions (H1), πk, qk,k+1 are rational functions of {c1, c2, . . . , c2k+1}.
Furthermore, we have Wk−1 = gk−1(A)Aβ and Wk = gk(A)Aβ from (H2). Then we have that
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h(A) is a polynomial of A of deg(h) = 2k, and so qk+1,k is a linear combination of βT Ai+2β

(i = 0, 1, . . . , 2k), with coefficients of rational functions of {c1, c2, . . . , c2k}. Therefore, by
(8) (i.e. βT Anβ = cn) and (23), qk+1,k is a rational function of {c1, c2, . . . , c2k+1, c2k+2} and so
is πk+1 = πkqk,k+1

qk+1,k
.

Now let us prove that Wk+1 has the properties of the inductive assumption in (H2). Again
using (19) we know that Wk+1 = gk+1(A)Aβ, where

gk+1(A) = 1

qk+1,k

[(qkI − A)gk(A) − qk−1,kgk−1(A)],

and from the result about qk+1,k , we have that deg(gk+1) = k and its coefficients are rational
functions of {c1, c2, . . . , c2k+2}.

About qk+1,k+2 and qk+1, by (17), we get

πk+1qk+1 = WT
k+1AWk+1 = βT gk+1(A)A3gk+1(A)β.

Hence, using the results about gk+1(A) and (8), qk+1 and qk+1,k+2 = qk+1 − qk+1,k are rational
functions of {c1, . . . , c2k+2, c2k+3}.

These have proved that the conclusions of induction are true for n = k + 1(1 � n � M).
�

From lemmas 2.1.1 and 2.1.2, we can easily obtain the following theorem.

Theorem 2.1.3. If {πi, i ∈ S} is the invariant probability measure of star-graph branch
Markov chain {Xt ; t � 0}, then {πi, i ∈ S1} and every element of H1 and A1 can be determined
by the PDFs of the lifetime and death-time at the end state E

(k)
0 .

Algorithm 2.1.4 (algorithm of calculating H1 and A1). Suppose that we have the
corresponding PDFs as defined by lemma 2.1.1.

Step 1. Calculate γi, αi(i = 1, 2, . . . , N), d1 and cj (j = 1, 2, . . . , 2M + 1) according to
equations (11), (8) and (9).

Step 2. Calculate π0, q10, π1, q11, q12, according to (12), (16) and (18), and

g1(A) = c1

c2
I.

Step 3. Suppose that we have πj , qj,j−1, qjj and qj,j+1 for j = 1, 2, . . . , n, then we calculate

qn+1,n = βT Ah(A)Aβ,

where

h(A) = 1

πnqn,n+1

[
(A2 − qnA)g2

n(A) + qn−1,ngn−1(A)Agn(A)
]

with g0(A) = 0,

gn+1(A) = 1

qn+1,n

[(qnI − A)gn(A) − qn−1,ngn−1(A)],

πn+1 = πnqn,n+1

qn+1,n

,

qn+1,n+1 = − 1

πn+1
βT gn+1(A)A3gn+1(A)β,

qn+1,n+2 = −qn+1,n+1 − qn+1,n.

Step 4. For n = M , we have simply qM,M+1 = 0, a1 = −qMM − qM,M−1.
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2.2. Observation at the end state E
(k)
0

Let

S = {
E

(k)
0 , E

(k)
1 , . . . , E

(k)
Nk

, . . . . . . , O
}
, Q = (qij )S×S =

Hk · · · Ak

...
. . .

...

Bk · · · −q

 .

Define τ (k) = inf
{
t > 0, Xt = E

(k)
0

}
and σ (k) = inf

{
t > 0, Xt �= E

(k)
0

}
(the death-time and

lifetime at the end state E
(k)
0 , respectively). According to discussions in section 2.1.1, we have

Theorem 2.2.1. If {πi, i ∈ S} is the invariant probability measure of star-graph branch Markov
chain {Xt ; t � 0}, then {πi, i ∈ Sk} and every element of Hk and Ak can be determined by the
PDFs of the lifetime and death-time for the end state E

(k)
0 (k = 1, . . . , m).

2.3. Main theorem and algorithm

Theorem 2.3.1. If {πi, i ∈ S} is the invariant probability measure of a star-graph branch
Markov chain {Xt ; t � 0}, then all transition rates of {Xt ; t � 0} can be determined by the
PDFs of lifetime and death-time at the end state of each branch (i.e., E

(1)
0 , E

(2)
0 , . . . , E

(m)
0 ).

Proof. By theorem 2.2.1, ak in Ak and every element q
(k)
ij (i, j ∈ Sk) of Hk can be determined

by the PDFs of the lifetime and death-time for the end state E
(k)
0 (k = 1, . . . , m).

Again by (1) and (2), we have

π = 1 −
m∑

k=1

Nk∑
i=0

π
(k)
i , bk = π

(k)
Nk

ak

π
, k = 1, . . . , m.

Therefore

q =
m∑

k=1

bk.

It can be seen from above that all conclusions of the theorem follow. �

Algorithm 2.3.2 (algorithm of calculating Q). Suppose that we have Hk,Ak and π
(k)
i (k =

1, 2, . . . , m) according to algorithm 2.1.4}, then

Step 1. Calculate π = 1 − ∑m
k=1

∑Nk

i=0 π
(k)
i according to equation (2).

Step 2. Calculate bk in Bk(1 � k � m) as follows:

bk = π
(k)
Nk

ak

π
.

Step 3. We have simply q = ∑m
k=1 bk .

Let

X = S[0,+∞) = {X = (xt : t � 0) : xt ∈ S for any t � 0}
be the path space of the star-graph branch chain {Xt : t � 0}. We define two i.i.d. sample
sequences on X, the lifetime sample sequence

{
σ (k)

n : n � 0
}

and the death-time sample

sequence
{
τ (k)
n : n � 0

}
of the state E

(k)
0 (k = 1, . . . , m) as follows:

τ (k)
n = t2n − t2n−1 (n � 0),

σ (k)
n = t2n+1 − t2n (n � 0),
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and

t
(k)
−1 ≡ 0,

t
(k)
0 = inf

{
t > 0 : Xt = E

(k)
0

}
,

t
(k)
1 = inf

{
t > t0 : Xt �= E

(k)
0

}
,

for any n � 1,

t
(k)
2n = inf

{
t > t2n−1 : Xt = E

(k)
0

}
, t

(k)
2n+1 = inf

{
t > t2n : Xt �= E

(k)
0

}
.

In theorem 2.3.4, we will present a new approach to estimate the transition rates for
the star-graph-type Markov chain in terms of the lifetime sequence

{
σ (k)

n : n � 0
}

and the
death-time sequence

{
τ (k)
n : n � 0

}
. To this end, we first prove the following lemma.

Lemma 2.3.3. If {πi, i ∈ S} is the invariant probability measure of star-graph branch Markov
chain {Xt ; t � 0}, then ak in Ak and every element qij (i, j ∈ Sk) of Hk can be estimated in
terms of the i.i.d. sample sequences

{
σ (k)

n : n � 0
}

and
{
τ (k)
n : n � 0

}
(k = 1, . . . , m).

Proof. Without loss of generality, we only prove the conclusion with k = 1. First, by
the law of large number, we note that the PDFs fσ (t) and fτ (t) of σ and τ , i.e. λ0, αi

and γi (i = 1, 2, . . . , N) can be estimated by the i.i.d. sample sequences {σn} and {τn}.
Next, by lemmas 1 and 2, a1 and qij (i, j ∈ S1) are fractional functions of λ0 and dn

(n = 1, 2, . . . , 2M + 1), which is the rational function of αi and γi (i = 1, 2, . . . , N).
Therefore the conclusions of the theorem hold true. �

In summary, we arrive at the following conclusions.

Theorem 2.3.4. For a star-graph branch Markov chain {Xt ; t � 0}, all transition rates of
{Xt ; t � 0} can be exactly estimated based upon the i.i.d. sample sequences

{
σ (k)

n : n � 0
}

and
{
τ (k)
n : n � 0

}
(1 � k � m).

3. Numerical examples

To demonstrate how to apply our algorithms to real data, we present a numerical example here.
As we mentioned before, the data we have are the observed PDFs of lifetime and death-time
at the end state of each branch. Based upon these data, we could find all the transition rates of
an ionic channel.

Example. An ionic channel can be conformationally described by a star-graph branch Markov
chain (see figure 3) with state space S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (states 0, 3 and 6 are three
end and therefore open states) and the true transition rates matrix Q = (qij )S×S is given by

Q =



−10 10 0 0 0 0 0 0 0 0
20 −70 50 0 0 0 0 0 0 0
0 25 −75 0 0 0 0 0 0 50
0 0 0 −100 100 0 0 0 0 0
0 0 0 200 −350 200 0 0 0 0
0 0 0 0 300 −450 0 0 0 150
0 0 0 0 0 0 −25 25 0 0
0 0 0 0 0 0 50 −250 200 0
0 0 0 0 0 0 0 100 −300 200
0 0 100 0 0 50 0 0 50 −200


. (22)
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6 7 8 9 2 1 0

5

4

3

Figure 3. Schematic plot of a star-graph branch Markov chain with three branches.

We can divide the calculation into two steps: fitting lifetime and death-time histogram
and transition rates estimation.

Step 1 (lifetime and death-time histogram estimate). Suppose that we have obtained the PDFs
of lifetime and death-time by observation and their histograms can be fitted (see Discussion)
as follows:

fτ (t) = 0.000 0001e−643.796 756t + 0.000 004e−445.713 365t

+ 0.000 149e−285.848 968t + 0.001 718e−205.873 825t + 0.068 305e−121.755 971t

+ 0.464 591e−76.342 605t + 1.901 507e−1.953 757t + 0.416 733e−22.161 497t

+ 0.021 244e−16.553 257t (t � 0),

fσ (t) = 10e−10t (t > 0).

(23)

fτ ′(t) = 1.949 789e−630.123 531t + 0.120 315e−444.791 002t

+ 2.895 117e−255.440 780t + 8.128 486e−167.600 852t + 0.310 173e−121.094 790t

+ 0.706 960e−75.276 457t + 0.333 774e−20.585 844t + 2.274 442e−2.686 048t

+ 0.767 283e−12.400 696t (t � 0),

fσ ′(t) = 100e−100t (t > 0).

(24)

fτ ′′(t) = 0.000 022e−643.796 957t + 0.024 344e−444.809 621t

+ 0.013 629e−285.322 792t + 0.040 708e−204.266 920t + 0.078 292e−118.785 191t

+ 0.038 611e−76.566 327t + 0.011 004e−22.910 254t + 0.501 357e−0.502 944t

+ 0.009 738e−8.039 996t (t � 0),

fσ ′′(t) = 25e−25t (t > 0).

(25)

where

fσ (t) (fτ (t)) is the PDF of lifetime (death-time) at the state 0;
fσ ′(t) (fτ ′(t)) is the PDF of lifetime (death-time) at the state 3;
fσ ′′(t) (fτ ′′(t)) is the PDF of lifetime (death-time) at the state 6.
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Step 2 (transition rate calculations). Firstly, by (23) and according to algorithm 2.3.2, we
have

q0 = −q00 = q01 = 10.

Let

α1 = 643.796 756, α2 = 445.713 365, α3 = 285.848 968,

α4 = 205.873 825, α5 = 121.755 971, α6 = 76.342 605,

α7 = 1.953 757, α8 = 22.161 497, α9 = 16.553 257;
γ1 = 0.000 0001, γ2 = 0.000 004, γ3 = 0.000 149,

γ4 = 0.001 718, γ5 = 0.068 305, γ6 = 0.464 591,

γ7 = 1.901 507, γ8 = 0.416 733, γ9 = 0.021 244.

Because d1 = ∑9
i=1 γi = 2.874 251, hence π0 = d1

q01+d1
= 0.223 256, 1 − π0 = 0.776 744.

Since

dn =
9∑

i=1

γiα
n−1
i , cn = (1 − π0)dn = 0.776 744dn,

we have

c1 = 2.232 558, c2 = 44.651 163, c3 = 3125.581 395,

c4 = 274 604.651 163, c5 = 27 315 348.837 209.

Thus, we can obtain that

q10 = c2

c1
= 20.000 001, q1 = c3

c2
= 69.999 999,

π1 = c2
1

c2
= 0.111 628, q12 = q1 − q10 = 49.999 998,

q21 = c1 ∗ (c4 − q1 ∗ c3)(
c1 ∗ c3 − c2

2

) = 25.000 001, π2 = π1q12

q21
= 0.223 256,

q2 = c5 − 2 ∗ q1 ∗ c4 + q2
1 ∗ c3

c4 − q1 ∗ c3
= 74.999 999, q29 = q2 − q21 = 49.999 998.

Therefore

H1 =
 −10 10 0

20.000 001 −69.999 999 49.999 998
0 25.000 001 −74.999 999

 , A1 =
 0

0
49.999 998

 . (26)

Secondly, by (24) and (25), using the same method as above, we have

H2 =
 −100 100 0

199.999 999 −350.000 000 150.000 001
0 299.999 998 −450.000 000

 , A2 =
 0

0
150.000 002

 . (27)

H3 =
 −25 25 0

50.000 030 −249.999 999 199.999 969
0 100.000 016 −299.999 999

 , A3 =
 0

0
199.999 983

 . (28)
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Finally, according to algorithm 2.3.2, we can obtain that

π9 = 1 −
8∑

i=0

πi = 0.111 626,

q92 = π2q29

π9
= 0.223 256 ∗ 49.999 998

0.111 626
= 100.000 179,

q95 = π5q59

π9
= 0.037 209 ∗ 150.000 002

0.111 626
= 50.000 449,

q98 = π8q89

π9
= 0.027 907 ∗ 199.999 983

0.111 626
= 50.000 892,

q9 = q92 + q95 + q98 = 200.001 520.

Thus, we have

B1 = (0 0 100.000 179), B2 = (0 0 50.000 449), B3 = (0 0 50.000 892) (29)

and the transition rate matrix of {Xt : t � 0} is given by

Q =


H1 O O A1

O H2 O A2

O O H3 A3

B1 B2 B3 −200.001 520

 . (30)

where Hk,Ak and Bk(k = 1, 2, 3) are given in (26), (27), (28) and (29).
Comparing the matrix (30) with the original Q matrix (22), it is not difficult to find that

our approach is very efficient under the condition that we obtain an accurate PDF of their
death-time and lifetime at the end state of each branch.

4. Discussion

Algorithms, based upon rigorous results, have been presented to estimate all transition rates of
a star-graph branch type Markov chain, with observations at the end state of each branch. In
comparison with maximum likelihood approaches in the literature, our approach has explored
the intrinsic mechanisms of the Markov chain and has obvious advantages as we have discussed
in previous sections.

As pointed out in the introduction, in experiments we are not able to access data of all
states of an ionic channel. The key issue is then how many states are necessary to be observed
to figure out all details of an ionic channel. We answer the question in our paper and it should
be helpful for colleagues working on experiments when they design their experimental set-up,
and finally leads to a better understanding on how an ionic channel functions. However, our
approach has pros and cons. The main issue is related to the estimation of the histogram of
the lifetime and death-time.

• Structure issue. For a single-ionic channel, there are many possible and different ways
of open and closed states [4, 26]. The consideration in our current papers is a special
case: the star-graph branch type. We have to resort to experimentlists to decide whether
a channel behaves as a star-graph branch type or not.

• Number of states in a single branch. After we confirm that the channel behaves as a
star-graph branch type of Markov chain, we are in the position to assess the possible
state of each branch. Fortunately, many existing approaches have been reported in
the literature; see for example [4, 18] for reviews. Actually similar issues have been
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extensively discussed in the literature as well, for example, to determine the order of an
ARMA sequence and the number of hidden units in a neural network. In time series,
AIC is usually applied to fit an ARMA model to data. In neural networks, the number
of hidden units is decided using the learning errors and generalization errors. We can, of
course, use a similar approach here, to best fit the data with a trade-off between the fitting
accuracy and the number of states. This would be one of the key issues when we deal
with experimental data and we will explore it in our further publications.

Finally, from theoretical point of view, for a Markov chain, we face the following open
problem: if one can observe the lifetime and death-time of a subset of the whole state space,
under what conditions of this subset, we can sufficiently determine the statistical characteristics
of the whole Markov chain. In fact, these results in the present paper also suggest a new kind of
statistics for Markov chain: to estimate the whole chain exclusively in terms of the observation
of a part of states. Our ultimate purpose is to build a theory to bridge the single-channel activity
and the single-cell activity, which lacks in the current literature despite many years research
(for example, see [12, 13] for reviews).
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